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Abstract

There is no foreseeable future in which science is not about data and the
inferences data license. For centuries, logic has been the tool to analyse infer-
ence. And yet, logic is vastly underappreciated in the current methodology of
data-driven science, as we argue in this paper. We first outline two historical
reasons behind this mismatch, then highlight the need to bridge it by examining
a widely used form of scientific inference: Null Hypothesis Significance Testing.
Finally, we argue that the question: what follows from data? is ripe to be tack-
led by logicians. We submit that this will help lay a sound methodological
foundation for the practice of data-intensive and Al-driven science.
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1 Introduction

There is no foreseeable future in which science is not Data-Intensive and AI-Driven
(DIAD) [34, 40, 55]. While the “transformative” promise of Al techniques is ubiq-
uitous in science, it is particularly detectable in the biomedical sciences, spanning
drug discovery [71] and diagnostics [11]. This is, of course, great news for health-
care [6]. Provided, that is, the key questions of transparency and trustworthiness in
Al-driven science are addressed quickly and effectively enough [61, 68].

The logical community has responded impressively to the problem of trans-
parency of Al systems, with the field of Formal/Abstract Argumentation Theory
emerging as cornerstone of explainable AI [3, 5, 19, 47]. The logicians’ involvement
in formulating and addressing the challenge of trustworthy Al is relatively more re-
cent [81], but it is delivering very promising results [16]. Those approaches typically
combine logical and statistical methods, used to account for the stochastic aspects
of data. There is, in short, no doubt that logicians are making an impact in this
new Al spring [28].

Those recent developments add to the contributions made over the past four
decades to the field of Knowledge Representation and Reasoning subfield of Al
Well-known success stories here include non-monotonic logics, paraconsistent logics,
probabilistic and fuzzy logics, logics for multi-agent systems, logics for collaboration
— the list is very long, see for example [18, 32, 57, 58, 75]. Much of the cutting-
edge contribution of logic to Al today is inspired, if not grounded, on those logical
systems. Those, in turn, largely developed starting from the 1970s in response to
the pressing needs arising in computer science and symbolic AI. The kind of humus
was pinned down in the inaugural editorial of the Journal of Logic and Computation

We do not mean ‘Logic’ as it is now. We mean ‘Logic’ as it will be, as a
result of the interaction with computing.[29]

The ensuing three decades witnessed the co-evolution of logic and computation,
paving the way for a turn towards the practical [30] which challenged the academic
boundaries of mathematics, computer science, philosophy, and law.

And yet, logic is vastly underappreciated in the methodology of data-driven sci-
ence. As we noted in [44], and will argue in greater detail herein, this neglect is
detrimental to both logicians and scientists. To be able to serve the methodology
of data-intensive and Al-driven science, logic and logicians would benefit from un-
dergoing yet another turn. This time towards the stochastic, the practical problem
solving.

Timothy Gowers put forward a distinction between the mathematicians who
work on theory and those that solve problems [63]. There is a very long and successful
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tradition of logicians solving problems in probabilistic logic, which starts with Boole
and De Morgan, and includes [37, 38, 62, 64, 65, 80] as very influential frameworks.
As we point out in [43] those are proposals which seek to extend classical logic with
the ability to express and do inference with probabilities. This has led and keeps
leading to deep mathematical results. It is however unlikely that those results will
be directly applicable to methodological purposes of data-intensive and Al-driven
science for the same sort of reasons classical logic won’t do (see below). To do
S0, borrowing again from Gowers, we need more theory. As we argue below, we
need to think rather carefully at the building blocks of data-driven inference, all the
way down to what we think valid data-driven inference should (not) be. Another
Fields medalist, David Mumford, has rather radical ideas on this score. He urges
us to put random variables into the foundations of mathematics, thereby marking
a dawning age of stochasticity [15]. Among the consequences of doing so, one needs
to reject the continuum hypothesis. Theory (re)building need not go that far, of
course, but Mumford’s point brings to the foreground that our understanding of
probability theory has profound consequences for foundational questions of logic.
And probability, as Laplace pointed out very clearly [53], arises precisely where
data and the lack thereof play an equally important, and intuition-defying, role in
scientific inference.

Using Gowers’ terms, we thus urge logicians to solve real-world (inspired) prob-
lems and for modern logical theory to be applicable in science, again.

The rest of this paper is organised as follows. We next identify two potential
reasons for the disconnect between scientists and logic (Section 2) and then zoom in
briefly on the logical foundations of statistical inference (Section 3). We conclude
with some reflections on the challenges that lie ahead (Section 4).

2 How working scientists lost contact with logic

Logic in vastly under-appreciated by working scientists and virtually absent from the
methodology of data-driven science [44]. We briefly discuss two potential reasons
for this state of affairs. The first is rooted in the enduring influence of Alfred
Tarski’s stance on the role of logic in the methodology of empirical science. The
second originates in the very enthusiastic reception of hypothetico-deductive and
falsificationist approaches within the sciences, resulting in a very narrow perspective
on logic.
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2.1 Tarski’s restriction and its influence on logicians

Alfred Tarski, as reported by his student John Corcoran, purportedly referred to
himself as “the greatest living sane logician.” The qualification was, of course, in-
strumental to rank himself above Kurt Goédel. Be this as it may, Tarski is certainly
one of the great modern logicians. He is also the author of the first popular-science
book in logic, which shaped the subject and its image within the wider scientific
landscape. Written in Polish in 1936, it appeared in German with the title Fin-
fiihrung in die mathematische Logik und in die Methodologie der Mathematik and
it was turned into a textbook for the 1941 English translation, titled Introduction
to Logic and to the Methodology of Deductive Sciences. As explained in the Pref-
ace, Tarski contrasts the latter with “the empirical sciences” which do not lend
themselves purposefully to logical methods:

I see little rational justification for combining the discussion on logic and
the methodology of empirical sciences in the same college course [77, p.
xiii.

This should not be read as Tarski dismissing outright the importance of empirical
science. In a comment to a seminar quoted in Chapter 10 of [24] Tarski states:

It would be more than desirable to have concrete examples of scientific
theories (from the realm of the natural sciences) organized into deductive
systems. Without such examples there is always the danger that the
methodological investigation of these theories will, so to speak, hang in
the air. Unfortunately, very few examples are known which would meet
the standards of the present-day conception of deductive method and
would be ripe for methodological investigations [...] The development
of metamathematics, that is, the methodology of mathematics, would
hardly have been possible if various branches of mathematics had not
previously been organized into deductive systems.

Requiring axiomatisation as a necessary condition for the applicability of logic
to scientific methodology, effectively means restricting the applicability of logic to
metamathematics. Owing to Tarski’s scientific and academic prominence, this view
has been very influential in shaping the twentieth-century perception of the sub-
ject, in and outside logic. The recent [25] testifies the enduring importance of this
perception.

However, as noted by Wilfried Hodges in his 2011 Division of Logic, Methodology
and Philosophy of Science Presidential Address [41], not very many would go on
doing the methodology of the empirical sciences as Tarski suggested. The birth and
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development of DLMPS owes much to Tarski, as recounted by [24], so his views
shaped the way Logic, Methodology and Philosophy of science have been construed
there, especially with respect to their lack of interaction. Indeed, inspection of the
DLMPS tables of contents over the decades shows very little trace of logic being
part of the methodology of “empirical” sciences. The emerging picture is rather one
in which DLMPS provides a rich umbrella encompassing both “metamathematics”
and the methodology of “empirical” sciences, but quite separately.

2.2 The Popper/Hempel influence on scientists

A second reason for the current underappreciation of logic in science may be rooted
in the enthusiastic acceptance, by working scientists, of hypotetico-deductivist dis-
confirmation as the signature of the scientific method. In this picture, which has
been incredibly influential in the construction of the self-image of generations of
scientists [74], logic contributes only with modus tollens (Popper, 2005,p. 89). In-
terestingly, Ken Aizawa argues that Hempel may have exerted an even stronger
influence than Popper in elevating modus tollens to the only logical snippet deemed
relevant to experimental science [2]. This picture has percolated magnificently in
the mindset of the methodologically conscious scientist: scientific hypotheses can
only be disconfirmed. For confirmation relies, as Hempel notes, on the deductive
fallacy of affirming the consequent [39]. Yet, as argued by Pdlya, “affirming the con-
sequent” is what scientists do when taking stock of (a positive) correlation [70]. To
mark its importance in data-driven reasoning, Pélya rebrands the long-vituperated
fallacy as the fundamental pattern of induction, on which we will come back soon.
Some scientists seem to have taken notice, notably [8, 48], but they appear to be
rare exceptions.

We have a logical blind spot: many working scientists are unaware of the rich
variety of logical nuances that would provide a much more adequate methodological
pillar in data-driven inquiry compared to classical validity. Aizawa suggests [1] that
fixing this blind spot requires replacing the HD view of disconfirmation with a frame-
work centred on abductive reasoning. This is good news, because practical logicians
have contributed to this area consistently for decades, see [31, 56] for overviews.
However, there are some usually neglected challenges, identified in Section 4 below,
that must be addressed.

Summing up, the restriction of logic to the methodology of deductive sciences on
the one hand, and the extraordinary success of the Popper/Hempel view impacted
negatively on the scope of logic and logical methods outside mathematics. As a
consequence, the logical questions on data-driven inference were left to statisticians.
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3 Inference in statistical inference

Around the same time Hempel was advocating for the primacy of classical logic,
Richard Feynman was crystallizing the role of modus tollens in the methodology of
science: “It doesn’t make any difference how beautiful your guess is [..]. If it disagrees
with experiment, it’s wrong” [26]. We take no issue, of course, with the message
delivered by the Feynman dictum. However, it may not be clear what it means for
data to (dis)agree with a hypothesis, as pointed out long ago by Duhem and Quine.
In fact, with the exception of very simple cases, it is almost never clear, as the one
century-old debates on statistical significance clearly testify [7, 54, 59, 67, 82].

3.1 Case study: Null Hypothesis Significance Testing

There is a commonplace view to the effect that statistics is “the logic of science”
[48, 49]. In an overview of R.A. Fisher’s contributions to statistics, Efron says:

Fisher believed that there must exist a logic of inductive inference that
would yield a correct answer to any statistical problem, in the same way
that ordinary logic solves deductive problems [21].

While this is a very logical way of putting it, likely borrowed from Boole’s formulation
of his general method [9], identifying criteria of validity for data-driven inference is
not what Fisher (or any other statistician, for that matter) went on to do. Rather
than being loosely inspired by logic, the logic of data-driven science should be logic;
even better, a logical framework for the sciences.

To see why, take the procedure known as Null Hypothesis Significance Testing
(NHST). Statisticians are often appalled by this acronym, because it juxtaposes
the conflicting ideas of Fisher on one hand, and the Neyman—Pearson duo on the
other. But given that NHST is what most working scientists do, it suits our present
purposes very well.

The key idea behind NHST is quite entrenched in scientific thinking: to assess
a hypothesis, look at its consequences. Specifically, we want to draw a conclusion
about a statistical hypothesis of interest on the basis of the data it would generate,
if true. So let Hy be the statistical hypothesis of interest, referred to (after Fisher)
as the null hypothesis, and denote the observed (low probability) data by D.

Specific instances of NHST are variations on the following pattern:
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(NHST1) Data D are observed.

(NHST2) If Hy were true, then data at least as improbable
(according to some test statistic) as D would be very
improbable.

(NHST3) Either we accept that very improbable events have
occurred or we reject Hy.

(NHST4) Very improbable events do not occur.
(NHST5) Therefore, we reject Hy.

Since Fisher’s [27] it has become customary to translate “very improbable”, with
p < 0.05. This threshold stuck, so 0.05 is indeed the most used p-value. Informally,
this is the calculated (hypothetical) conditional probability of observing data as
improbable as, or more improbable than D, given that Hy is true. Hence, the
purpose of NHST so construed is to let the data speak about Hp: a small-enough
p-value being licence to reject Hy.

Given the observations in Section 2, it is unsurprising that concluding (NHST5)
from the conjunction of the premisses (NHST1-NHST4) is often justified by invoking
modus tollens. Here are a few notable examples: [17] speaks of “inductive modus
tollens”, [59] refers to “statistical modus tollens”, whereas [72] tellingly notes that
the analogy with modus tollens lends tests of significance their prominence in the
“scientific method”:

[modus tollens] is at the heart of the philosophy of science, according to
Popper. Its statistical manifestation is in [the] formulation of hypothesis
testing that we will call ‘rejection trials’. ([72], p.72)

Quite interestingly, this view is shared by prominent critics of NHST as well, see
e.g. [76], more on this below.

The NHST pattern of inference can be mapped to something that looks like
modus tollens by making the following assumptions:

(A1) Boolean implication is the adequate formalisation of the conditional
statement featuring in the p-value.

(A2) The clause that the observed data given Hy should be at least as im-
probable as D (as measured by some test statistics) can be omitted
with no loss of generality;

(A3) Small (but non-zero) probability events are false.
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With (A1-A3) in place we get the following instance of modus tollens:
(NHST’1) D
(NHST’2) Hy — -D
(NHST’3) Therefore, ~Hy

Before going into some detail as to why (A1-A3) are rather unpalatable, note
that (Al) and (A3) are compatible with the so-called Fisher Disjunction:

The force with which such a conclusion is supported is logically that of
the simple disjunction: FEither an exceptionally rare event has occurred,
or the theory of random distribution is not true [27].

The untenability of (A2) is easily ascertained by probabilistic means, and hence
well-appreciated in the statistical literature. Its implausibility is in fact the reason
why the awkward “as improbable or more improbable” bit cannot be omitted from
a correct conceptualisation of the p-value [46]. So let’s focus on the other two
assumptions.

The problem with (A1) is more subtle, and quite hard to spot unless one looks at
it from a probability logic angle. Recall that the probability of a Boolean implication
does not equal, in general, the “associated” conditional probability, i.e:

P(D | H) # P(H — D),

where P is a probability function on the propositional language which includes H
and D, and which is closed under the usual Boolean connectives. This obvious fact
may easily go unnoticed to the working scientist as a consequence of the ambiguity
of natural language. More precisely, it may be hard to see the difference between

o The probability of the data given the null hypothesis.
o The probability that the null hypothesis implies the data.

It is no mystery that implication is vastly misunderstood outside its mathematical
usage.

(A3) amounts to a metaphysical assumption on the nature of probability. Some-
times it is referred to as the Cournot Principle after [14], and it lies at the heart of the
frequentist view of probability underlying NHST [73]. Loosely put, the Cournot prin-
ciple says that the (physical) meaning of probability is that very small-probability
events do not happen. This relates to a more general question: how small should
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a small probability be before it is rationally neglected? Debated at least since Jacob
Bernoulli’s Ars Conjectandi, it isn’t likely to be decided any time soon. So rather
than untenable, the adequacy of (A3) seems not to be tackled meaningfully from
the logical point of view. There is some irony in this, of course, in light of the
rhetoric that views NHST as purely data-driven, and hence objective. An irony that
of course has not escaped the attention of critics. See [36, Chapter 14] for a concise,
witty overview by I.J. Good.

3.2 On the analogy between statistical inference and classical de-
duction

In light of the above discussion, it is curious that the statistical camp seems to
be generally happy with justifying NHST through modus tollens. Indeed, some
have strongly dissented, pointing to the failure of modus tollens as a strong line
of criticism of p-value based significance [23, 50, 76]. Consider the following (now)
standard example made popular by [69]:

(P1) Harold is a member of Congress;

(P2) If Harold is a US citizen, than he is most probably
not a member of Congress;

(P3) Therefore, Harold is likely not a US citizen.

While premisses (P1-P2) may be easy to accept, the conclusion (P3) is not, since
being a US citizen is a necessary condition to sit in the US Congress. Hence, the
example shows a context in which (NHST’1-NHST’2) above may be satisfied, but
not (NHST’3).

The ‘Harold example’ certainly suggests that there is something to be careful
about in NHST inference, but it still concedes a lot to assumptions (Al) and (A3)
above. For it shows the classical invalidity of NHST inference. However, similarly
to what was noted above regarding (A1-A3), classical validity is hardly adequate
to capture the “most probably” and the “likely" that appear in (P2) and (P3).
As argued in detail in [4] turning to non-monotonic consequence relations pays nice
dividends. In addition to expressing adequately the qualitative uncertainty conveyed
by (P2) and (P3), suitably defined non-monotonic consequence relations are capable
of vindicating some of the intuition linking conceptually NHST to modus tollens.
Indeed, from the non-monotonic-logic point of view, the natural conclusion of (P1-
P2) above is that Harold is not a typical US citizen.

The discussion above leads to the more abstract and general question as to
whether data-driven patterns of reasoning can at all “borrow their validity”, so to
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speak, from analogous classical patterns. Let’s call this the Analogy Principle. We
have seen that modus tollens is classically valid, but fails in contexts of interest to
significance-based inference. But the Analogy Principle is unreliable also in the other
direction. To see this, consider Pélya’s fundamental inductive pattern mentioned
briefly above:

A— B
B

(FIP)
A [becomes] more plausible.

As a scheme of inference, (FIP) has no direct counterpart in classical logic, but
if one reasons by analogy and takes “A [becomes| more plausible" as “A [is] true",
then (FIP) is precisely the deductive fallacy of “affirming the consequent” despised
by Hempel.

So the Analogy Principle can mislead in both directions: data-driven inference
may not get methodological support from analogous classical patterns of inference,
and conversely, classically invalid patterns of inference may be crucial to their ana-
logues for data-driven reasoning. No wonder then that one sees rather spectacular
failures of the Analogy Principle in connection to the (mis)applications of NHST
[42, 50, 66].

Taking stock from the failure of the Analogy Principle we may conclude that
validity does not form a continuum spanning mathematical proof and data-driven
inference. Indeed, it is well known that modus tollens need not be probabilistically
valid [10], and in general fails to deliver a point-valued probability [79]. Hence, it is
not advisable to trust a statistical pattern of inference because it can be articulated
as the stochastic analogue of a classically valid one. Interestingly, this view resonates
with Tarski’s insistence that logic’s proper role resides exclusively in the methodology
of deductive sciences. However, one century on, both the scientific and the logical
landscapes have changed dramatically. The coming of age of data-intensive and
Al-driven science, with its ability to immediately impact society and ultimately our
daily lives, compels us to devise a fail-safe “general method” for valid data-driven
inference. The time is ripe for logicians to venture where Tarski saw no role for
logic.

4 Challenges

The coming of age of data-intensive and Al-driven science raises questions revolving
around a key one: what follows from stochastic data? Addressing it involves taking
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a step back, and asking logical questions about statistical inference. The previous
Section demonstrates that we must be cautious before we leap. We conclude this pa-
per by offering some reflections on two rather distinct challenges inherent in making
this leap.

4.1 Choosing a good trade-off between context-dependent and for-
mal nature of validity

Suppose we agreed to play dice, no money involved. The first who rolls three “ones”
wins. If you win on the first try, we’d be witnessing a 1/216 probability event.
Would this be evidence that the dice are loaded? NHST would say so, with rather
strong “significance”. But an event of this improbable kind is certainly not impos-
sible. Second round, and you score again. The probability of you winning twice in
a row now gets quite small at 1/46656. This is roughly four times smaller than the
chance of a (natural) triplet birth. Again not impossible, but uncommon enough to
justify jumping to the conclusion that maybe the dice are loaded after all. Doing so
is reasoning along the lines of NHST. And so do particle physicists when claiming
discoveries [20]. Famously, the Higgs Boson was announced with a “5 sigma” signif-
icance, which roughly corresponds to a p-value of around 1 in 3.5 million. Those are
just two of very many circumstances in which significance inference delivers unques-
tionable results. But apparently minor variations on the NHST pattern of inference
soon lead to very questionable outcomes [13, 45]. So, what appears to be the same
pattern of inference seems to be sometimes valid and sometimes not. This is a clear
call for logical scrutiny.

Defining the meaning of formality may not be straightforward. However, one
rather uncontroversial view holds formality to be pinned down by closure under
uniform substitution, sometimes also referred to as structurality. While it is a char-
acteristic property of classical logic, closure under substitution fails for many logics
for practical reasoning, notably non-monotonic logics [57, P. 14] and paraconsistent
logics [32, P. 76]. However, since classical logic is manifestly unfit for purpose, a
trade-off between formality and concreteness must be identified.

It is well-known from the psychology of reasoning that, while we may struggle
with basic inferential patterns in decontextualized tests, we do very well in dialogical,
argumentative contexts. The key difference being that in the latter we are genuinely
trying to evaluate or convey practically directed information [60]. So, if we are
interested in providing logical criteria for the validity of data-driven inference, we
must strike a balance between:

o offering criteria that are applicable beyond the single, specific, case;
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o ensuring that some context-specific aspects of the data-driven inference we are
interested in must be represented.

It turns out that the terms of this trade-off have a lot to do with opposing statistical
methodologies. Discounting some inevitable and very human attachment to one’s
own ideology, it is quite easy to see scientific communities naturally clustering around
certain statistical methodologies. The kind of data that is typically available in a
given field plays a big role in matching probabilistic ideology and research contexts.
This may account for the fact that, say geneticists rarely identify as “Bayesians”,
whereas the strongest opposition to the NHST hard-core frequentism comes from
the social sciences [82]. So it is the nature of the data-generating mechanisms that
provides the context for data-driven reasoning. And this is what probably marks the
difference between apparently similar, but logically distinct, patterns of data-driven
inference.

Creating families of logical systems capable of adapting to the context-depending
demands of practical reasoning is the core methodology of Labelled Deductive Sys-
tems (LDS). While we are not aware of any LDS framework motivated by the prob-
lem of accounting for data-driven inference, a recent retrospective [33] demonstrates
the applicability of LDS to the analysis of legal evidence, which is a particularly
regimented case of data-driven inference. Similarly, the logical framework for data-
driven reasoning recently put forward in [4] seems to be promising by striking a
reasonable balance between formality and context-dependence. The formality of the
concept of validity is provided by a blueprint consequence relation, whose intended
semantics is built on the idea that data can reject, to some degree, and possibly by
mistake, any well-formed (statistical) hypothesis. Then, different data-generating
contexts give rise to distinct consequence relations, fine-tuning the “blueprint”.

4.2 Communicating across academic disciplines and societal sectors

Let us close with a challenge which is hardly ever on the logician’s agenda, but which
is crucial nonetheless: finding an effective way to communicate the criteria for valid
data-driven reasoning across disciplines and, ideally, across sectors.

First, as noted in Section 2, working scientists have very limited familiarity with
the subject. This owes to the fact that most scientists acquire only indirect training
in logic, chiefly through introductory chapters in mathematics textbooks. Those
typically cover rudimentary classical logic, often expressed in the form of naive set
theory. This results in scientists typically identifying logic with an informal version
of classical logic, very much in line with the Popper/Hempel view recalled above.
Of course, we can’t expect, say, a translational biologist to get acquainted with
the formal detail of logics for data-driven reasoning. So, the challenge arises to

1604



WHAT FOLLOWS FROM ALL THAT DATA?

make the results which will (hopefully) spring by addressing the logical issues raised
above usable for the translational biologist. It is no small challenge, of course,
but we can look at statistical software for inspiration. The computational turn
in statistics made data-intensive, and then Al-driven inference, unprecedentedly
accessible [22]. Modelling the construction of data-driven scientific knowledge with
abstract argumentation theory stands out as a promising route to achieving that
[52].

Second, the curious scientist, policy-maker or ideal (in our view!) citizen who oc-
casionally enjoys the popular science book, will only find logic-as-metamathematics
titles on the shelves. Communicating the golden age of mathematical logic with the
extraordinary contributions of Cantor, Russell, Hilbert, Gédel, Tarski, and Turing,
certainly makes for good storytelling which is moreover naturally in tune with what
most readers expect. Again, we take no issue with the narrative recounting how
logicians ascended the highest peaks of human intellect. Yet, we badly need logical
methods to enter inter-sectoral dissemination. Scientists, policy-makers, and curious
citizens must have a chance to appreciate the role of logic in shaping the methodol-
ogy of data-intensive and Al-driven science. Hence, the popular science bookshelves
must hold logic books that extend well beyond the foundations of mathematics. Eu-
genia Cheng’s [12] and Adam Kucharski’s [51] are recent and successful books that
go in this direction. Many more are needed.

The history of the subject is filled with logical types thriving on practical prob-
lems. I.J. Good’s [35] reports on previously classified material of the work done by
Alan Turing at Bletchley Park. Among other things, Good describes how his line
manager worked out from scratch the (odds form of the) Bayes rule while trying to
crack Enigma. A few years later, on 20 February 1947, Turing delivered a lecture at
the London Mathematical Society, reporting on the construction of the Automated
Computing Engine (ACE), where he argues extensively for giving priority to large
enough and accessible enough data storage:

I have spent a considerable time in this lecture on this question of mem-
ory, because I believe that the provision of proper storage is the key to
the problem of the digital computer, and certainly if they are to be per-
suaded to show any sort of genuine intelligence much larger capacities
than are yet available must be provided. [7§]

Three quarters of a century later, the historical events have been turned into an
award-winning movie (The Imitation Game) and the digital computer with proper
storage (measured in terabytes) has become ubiquitous. We contend that after
solving the challenges of building a digital computer and storing large amounts of
data the next challenge is to determine what follows from all that data.
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5

Dedication

It is an honour and a pleasure to offer this note in celebration of Dov Gabbay’s
80th birthday. Dov’s remarkable approach to logic has been a great inspiration to
us since our days as graduate students. It is an inspiration that continues to this

day.
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